

New light heating solutions

We are committed to reducing your heating energy consumption

The following is the energy consumption of two different households

\$,

170\$ Monthly heating cost Da beatin

58.5kwh Daily heating cost 150m² Three bedrooms A family of three

Living with the elderly

60^{m²} One bedroom

A family of three, living with the elderly

During the day, the old man is at home, and the living room is used for 8 hours

All bedrooms at night All three bedrooms are open

\$

12.6kwh Daily heating cost

one living room Live alone

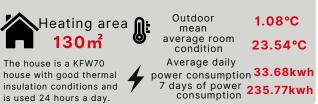
Lifestyle static separation District heating is used completely when people are at home

Electricity charges are calculated according to 0.1\$/KWH

Light heating, why more energy saving?

Water heating relies on hot water to transport heat, heating is slow, it is difficult to achieve individual control of each room. After installation, users often have a headache for the monthly cost of 2-3 thousand, or even higher. Therefore, some users choose to only open 1-2 rooms and have to endure the cold in other areas of the home. This will undoubtedly directly lead to a decline in the quality of life in winter.

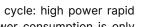
LaminaHeat can make the heat evenly and quickly spread in the space, and minimize the loss of heat in the building body (such as the floor cement layer), so that the whole house can be heated within 30 minutes, almost on demand, which is the great change brought by all surface light heating for building heating.


This way, you can choose to turn off the heat in a room that is empty and turn it on again half an hour before people return to the room. The use of smart devices, according to the use of habits for intelligent timing to open and close, more worry!

At the same time, your heating energy consumption It is deeply affected by the insulation efficiency of the house

We are committed to helping you save money on heating. Even so, the energy consumption If your home is a figure is still strongly influenced by the insulation efficiency of the house. The following are national standard houses (which can represent the insulation level of new houses in most cities in China), houses with internal insulation, and low-energy houses. When the your energy bills average outdoor temperature in winter is -2°C and the indoor temperature controller is set will be well below to 22°C, the energy consumption of the three houses is as follows:

low-energy home, average.


					average.	
Ordinary House Use air heat pump for heating Heating requirement 120KWH/m²*a The corresponding wattage requirements are	Ordinary Hous Heating requirement 120KWH/m³*a The corresponding wattage requiremen	100 H w/m 5 tts are	More insulate nstall a certain a of internal insulat leat demand atta 53KWH/m ² *a The correspondin wattage requirem	mount 🍐 🍐 tion ainment 59 w/m ²	Low E Hous Low energy hous heat demand 30KWH/m²*a The correspondir wattage requirem	ing 🍐 35 ng W/m
80%	$\mathbf{\wedge}$	35%	$\mathbf{\wedge}$	23%	$\mathbf{\wedge}$	18%
60-120min hot-start-up time Water heating Covered area		leating film erage ratio	15-20min hot-start-up time	Heating film Coverage ratio	10-15min hot-start-up time C	Heating film overage ratio
0.035kwh 3.5kwh	0.03kwh	3kwh	0.014kwh	1.4kwh	0.008kwh	0.8kwh
Per square meter 100 square meters P Electricity per hour Electricity per hour E			Per square meter Electricity per hour	100 square meters Electricity per hour	Per square meter Electricity per hour	100 square meters Electricity per hour
105\$/mth 35kwh	10 87\$/mth	30kwh	10\$/mth	14kwh	(10) 23\$/mth	8kwh
the air heat pump on meters the market is Daily electricity		100 square meters ily electricity consumption	Use it 10 hours a da About the size of average family The ener consumption of t partition	an 100 square gy meters gy Daily electricity	Use it 10 hours a day About the size of ar average family The energy consumption of the partition	n 100 square meters / Daily electricity
(24) 244\$/mth 84kwh	209\$/mth	72kwh	(24) 78\$/mtl	h 33.6mth	(24) 56\$/mth	19.2kwh
Open all day, air heat 100 squar pump heating is a common way to use Daily electricit consumptio	s activities in each y room throughout the l	100 square meters Daily electricity consumption	activities in ea room throughout 1	ach meters the Daily electricity	There are frequen activities in eac room throughout the day, which is rare	h meters
Real-time data	a logging		E	lectricity charges a	are calculated accord	ling to 0.1\$/kwh
We obtained the consen- their household energy time, and recorded the for the week from Janu as shown in the figure.	consumption data i real-time data moni	n real toring	25 °C temperatu 20 °C 15 °C 10 °C 5 °C 0000	ure outside temperature	heating energy consumption	4 kW -3.5 kW -2.5 kW -2.5 kW

Notice:

* In the general house insulation user habits, the heating system working process is the following cycle: high power rapid heating - low power low temperature maintenance - high power rapid heating, so the actual power consumption is only equivalent to 1/3-1/5 of the highest power.

* If the project is improperly designed or the user has abnormal habits (such as frequently opening Windows), the energy consumption value will increase accordingly.

0.5 kW

www.laminaheat.com